

ALL Power Labs

GCU Manual

Hardware version 3.01

Draft revision 0.6

G. Homsy

6 December, 2009

Table of Contents
1 Introduction...3

1.1 Features in brief...3
1.2 Getting started ...3

2 Features in detail ...5
2.1 Power input ...5
2.2 CPU...5
2.3 Thermocouple inputs ...6
2.4 Pressure inputs...7
2.5 Auxiliary analog inputs..7
2.6 FET outputs ...7
2.7 Display and keypad..8
2.8 USB Host interface ..8
2.9 Frequency counter input...8
2.10 PWM servo outputs ...9
2.11 CANbus...9
2.12 Auxiliary RS-232 port..9
2.13 SD-card slot...9
2.14 Prototyping and modification area..9

3 Operation in detail ... 11
4 Firmware and support.. 12

4.1 Getting started ... 12
4.2 Modifying the firmware... 13

5 Internals .. 14
5.1 ATmega1280 I/O pin assignments ... 14
5.2 Firmware internals ... 19

6 Appendices.. 22
6.1 Warranty.. 22
6.2 Resources on the web... 23
6.3 I/O connector pinouts... 24
6.4 Firmware repository... 29

1 Introduction
The Allpower Labs GCU is a standalone industrial process control kit, based on an Atmel
ATmega 1280 microcontroller. To the core controller are attached numerous I/O
peripherals, chosen specifically to be useful for Gasifier control and research.

The GCU is supplied with a basic standalone application preinstalled. This application,
called the “Basic App” in this document, supports basic measurement and manual
control, using the built-in keypad buttons and the built-in display; and data logging, via
the USB serial port. The Basic App, and all its supporting libraries, are Open-Source,
and are distributed under the GPL (GNU General Public License). The source code is
available from Allpower’s “gekgasifier” web site, and on SourceForge.net.

The microcontroller is also preprogrammed with the Arduino boot loader. This allows
any user with basic microcontroller skills to write and modify their own gasifier control
programs, using the Open-Source Arduino development kit, available for free download
from the Arduino site.

The GCU is available as a board-level product only, with two different feature sets: The
“basic” and the “full”. The “basic” may be upgraded to the “full” by a user experienced
in surface mount soldering and electronics debugging techniques.

1.1 Features in brief
• ATmega 1280 processor core
• Sixteen K-type thermocouple inputs
• Six differential or gauge pressure/vacuum inputs
• Eight PWM FET outputs
• Four auxiliary analog inputs
• Frequency counter input
• Three R/C hobby servo outputs
• Display and four button keypad
• USB serial host interface
• SD-card slot
• CANbus interface
• Auxiliary RS-232 interface
• User prototyping / expansion area

1.2 Getting started
• Plug the power supply in
• (optional) Plug a K-type thermocouple into the connector labeled “T0”
• (optional) Attach a piece of tubing to one of the pressure ports on the pressure

sensor labeled “PS0”
• (optional) Attach a hobby servo to the connector labeled “SRV0”. The black wire

from the servo should be connected to PIN 1 on the connector (labeled with a dot)

• (optional) Attach a small (less than 2 amp) twelve-volt DC motor to pins 2 and 6
of the connector labeled “FET0 – FET3”

• Now, plug the GCU into the power supply
• The power LED should light, and the heartbeat LED should start flickering
• The menu of the “Basic App” should immediately appear on the display screen
• Practice navigating through the various display and control screens. You should

be able to measure temperature and pressure, and control your hobby servo and
your DC motor

• If it works, congratulations! If it doesn’t, refer to the “troubleshooting” section

2 Features in detail

2.1 Power input
The power input jack accepts 7 to 30 volts DC, center positive, on a 5 x 2.5 mm barrel
connector. The input has a reverse blocking diode to prevent damage in case of reverse
polarity connections.

Input power is applied directly to the FET output circuitry if jumpers JP1 and/or JP2 are
installed. The reverse blocking diode will not protect the FET circuitry!

In parallel, the input power is fused by a resettable PTC fuse, F8, and then fed to a buck-
mode switching regulator, to efficiently derive a 5 volt supply for the R/C hobby servos,
and for the rest of the onboard circuitry.

2.2 CPU
The MCU used is the Atmel ATmega1280, in the LQFP100 package.

2.2.1 Feature set
The ATmega1280 features 128kB of in-circuit programmable flash memory, 4kB of
EEPROM, and 8kB of on-chip SRAM.

The clock speed used in the GCU is 16MHz.

The MCU features four 8-bit PWM channels, and twelve programmable resolution PWM
channels. Of these, only the programmable resolution PWM channels are used in the
GCU. They are in groups of three, on four separate hardware timer/counters. Three
groups are used for the FET PWM outputs, and one group is used for the R/C hobby
servo outputs.

There are sixteen 10-bit analog inputs. Sadly, four are consumed by the JTAG interface.
Six are used for the pressure and temperature sensors, four are auxiliary inputs, and two
more are available for user expansion.

2.2.2 Arduino environment
The GCU is supplied pre-flashed with the Arduino Mega bootloader. If you install the
Arduino development environment on your PC and attach a USB cable to the GCU, then
you will be able to upload Arduino sketches to the GCU.

2.2.3 AVR-ISP
We encourage you to use the Arduino environment to develop enhancements to the GCU
firmware. If you do not wish to use the Arduino environment, the MCU is programmable
directly in-circuit using one of Atmel’s AVR ISP dongles, of either the six pin or the ten
pin flavor. Consult Atmel’s web site for AVR development kits if you wish to develop
your own firmware directly in C.

2.2.4 JTAG
The GCU features a ten pin JTAG interface for in-circuit debugging. To use this feature,
you must have a compatible JTAG dongle. Consult Atmel’s web site for compatible
JTAG dongles.

2.2.5 Compilers
The GCU firmware libraries are developed in C, and typically compiled in the Arduino
environment, which uses the GCC / GNU Make toolchain. The hardware interfacing
specification is open, therefore users may develop their own firmware if they wish. Other
C compilers for the AVR series include:

• IAR systems
• Imagecraft
• Codevision AVR

The “Basic App” is also compiled and built in the Arduino environment.

2.3 Thermocouple inputs
There are sixteen thermocouple inputs, labeled T0 through T15, and ideally suited for K-
type thermocouples. They use a low-cost chopper stabilized differential amplifier circuit
specifically designed for this application. Input is via Omega type PCC-SMP receptacles.
The mating connectors are listed in section 6.3. Measurement range is from room
temperature up to about 1250 degrees C.

The inputs have been designed to work with either case-grounded or case-floating
thermocouples. For fastest response time, lowest cost, and best noise immunity,
Allpower Labs suggests using case-grounded type thermocouples. In this case, it is
important that the frame ground of your gasifier be at the same voltage as supply ground
to the GCU. If your application requires floating the gasifier itself away from GCU
ground, please consult Allpower Labs for further ideas and instruction.

Cold junction compensation is done in software, assuming the cold junction temperature
is 25C. Therefore, the measurements will be in error by the amount by which the ambient
air temperature differs from 25C. This was done to minimize costs, assuming most
gasifier applications could live with +/- a few degrees accuracy. For more accuracy,
provision has been made for a Dallas DS1821 semiconductor temperature sensor to be
fitted at U307, to provide cold junction compensation based on the actual cold-junction
temperature.

The thermocouple channels may be configured for other types of thermocouples via user
firmware, by writing calibration routines specific to the type of thermocouple used.
Alternatively, these inputs may be used to measure any low voltage differential signal, as
long as the common mode voltage is between -0.3 and +0.7 volts. A good example might
be current sensing using a shunt resistor.

2.4 Pressure inputs
There are six pressure sensor positions, labeled PS0 through PS5. The board land
patterns are compatible with Freescale pressure sensor case types 482-01, 482A-01,
1369-01, 1351-01, and 1735-01.

Any Freescale pressure transducer with internal temperature compensation and on chip
signal amplification and conditioning that fits the land pattern on the GCU may be used.
Examples are MPXx7002, MPXx5010, MPXx5004, MPXx4006, etc. Consult the
Freescale web site for a selection guide.

The “basic” GCU kit is supplied with one MPXV7007DP sensor (at PS0), and one
MPXV7002DP sensor (at PS3). These are dual-ported sensors which read differential
pressure/vacuum bidirectionally. The 7007 reads from +28 inches to -28 inches of water
(+/- 7kPa). The 7002 is more sensitive (but also more fragile). It reads from +8 inches to
-8 inches of water (+/- 2kPa).

The “full” GCU kit is supplied with three MPXV7007DP sensors (at PS0, PS1, and PS2),
and three MPXV7002DP sensors (at PS3, PS4, and PS5).

2.5 Auxiliary analog inputs
Four auxiliary analog inputs, ANA0 through ANA3, are provided via connector ANA.
They have input voltage dividers whose gain is settable via user-supplied resistors.

R603 and R604 set the input gain of ANA0. Gain is R604/(R603+R604).
R605 and R607 set the input gain of ANA1. Gain is R607/(R605+R607).
R608 and R609 set the input gain of ANA2. Gain is R609/(R608+R609).
R610 and R611 set the input gain of ANA3. Gain is R611/(R610+R611).

The divided voltages are clamped to the range of 0..5 volts, via a zener shunt protection
circuit. If you wish to overdrive the voltage on the analog inputs, please be sure to select
input resistors with high enough impedance to limit the input current to 30 mA or less.

2.6 FET outputs
Eight sink-to-ground type switched FET outputs are provided, at the connectors labeled
FET0-3 and FET4-7. The device used is the Vishay Si4322DY, with integral Schottky
diode. Vds is 30V, and Id is 18 amps, though thermal considerations will prevent sinking
18 amps continuous. Allpower Labs suggests not sinking more than 5 amps continuous
per channel.

Pin 1 (labeled with a white stripe) of each terminal strip is ground. Pins 2 through 5 are
the FET outputs. Pin 6 is the positive supply for flyback protection.

Flyback protection is provided by D501 through D508. Flyback reference supply should
either be presented at pin 6 of the terminal strip, or JP501 (resp. JP502) should be
installed to use the supply input to the board as the flyback reference. If JP501 (resp.

JP502) is installed, then the positive supply input to the board will be available at pin 6 of
the terminal strip.

Overcurrent protection is provided by F501 through F508, resettable PTC fuses. As
supplied, these are of type Littelfuse 30R300UU. Hold current is 3 amps, trip current is 6
amps, and the trip time is 10.8 seconds.

All FET outputs may be modulated via hardware PWM outputs of the MCU.

2.7 Display and keypad
A 4x20 alphanumeric backlit LCD display is provided, along with four softswitches
below it (PB0 through PB3). This facilitates stand-alone operation, without the use of a
host computer.

If more softswitches are desired for your application, a 4 by 4 matrix keypad may be
connected to the connector labeled “keypad”. See section 6.3 for details.

2.8 USB Host interface
The USB host interface is the primary means for the GCU to communicate with a host
computer. It behaves as a USB serial port.

The host interface uses an FTDI FT232RL chip. The drivers for this chip are already
included with modern versions of the Windows, MacOS, and Linux operating systems.
You should not have to download or install any drivers – the GCU should appear as a
serial port when you plug it in via a USB cable. Examples might be COM7 or COM8 in
windows, or /dev/ttyUSB0 in Linux.

You may talk directly to the GCU using a terminal program of your choice. Set your
serial communication parameters to 115200 baud, 8 data bits, no parity, 1 stop bit, no
hardware flow control.

The Basic App outputs data from all the sensors in CSV format. You may log this data
by setting your terminal program to save the session to a file. Or in Linux, you may log
data directly from the command line by using, for instance, “cat /dev/ttyUSB0 >
logfile.csv”. Alternatively, you may alter the GCU Basic App, and write a host-side
program to your own specifications to interface with the GCU.

2.9 Frequency counter input
A single frequency counter input is provided via the connector labeled “TIMER”. This
facilitates, for example, measurement of the RPM of an attached internal combustion
engine (or a turbine, for that matter).

The input has a voltage divider whose gain is settable via user-supplied resistors.
R601 and R602 set the input gain of TIMER. Gain is R602/(R601+R602).

The divided voltage is clamped to the range of 0..5 volts, via a zener shunt protection
circuit. If you wish to overdrive the voltage on the timer input, please be sure to select
input resistors with high enough impedance to limit the input current to 30 mA or less.

2.10 PWM servo outputs
Three R/C hobby style PWM servo outputs are provided, with standard pinouts. The
connectors are labeled SRV0, SRV1, and SRV2. The BLACK (ground) wire of the servo
should be aligned with pin 1 of the connector (labeled on the board with a white stripe).

Power for the servos is 5 volts DC, derived from the input power to the board via the
main switching regulator. The drive current per servo should not exceed 1 amp
continuous.

Pulse frequency is nominally 62.5 Hz (i.e. 16 ms period). Pulse width is variable from
approximately 500 us, to approximately 1500 us.

2.11 CANbus
A CANbus interface is provided at the terminal strip labeled “CAN”. Presently no
firmware support is provided. This might be used, for example, to interface with the
motor management system on a modern automobile.

The hardware is an MCP2515 CAN controller chip, interfaced to the MCU via the SPI
port.

2.12 Auxiliary RS-232 port
An auxiliary RS-232 port is provided, with a DB-9M connector. The GCU functions as
DTE. Presently no firmware support is provided.

2.13 SD-card slot
An SD card slot is provided. This is intended for data logging. No firmware support will
be included in the early firmware versions.

The slot is interfaced to the MCU via SPI, so code may NOT be directly executed from
the SD card, and data may NOT be fetched directly from the SD card directly through the
data address space of the MCU. In the future, low level I/O firmware routines will be
provided for interfacing to the SD card.

2.14 Prototyping and modification area
Underneath the display (or on the back side of the board, if you wish to think of it that
way), a generous breadboard area is provided. This area has approximately 800 plated-
through holes, on 0.100” centers, to accommodate user circuitry.

All unused pins on the MCU are padded out to vias, to facilitate user interfacing to the
MCU. Sadly, these vias are somewhat haphazardly placed, due to space restrictions on

the board. Contact APL for details on via locations, or look at the board yourself with a
loupe in the vicinity of the MCU.

3 Operation in detail
XXX TBD

4 Firmware and support
The “Basic App” supplied with the GCU is written in C, and compiled in the Arduino
environment.

The decision to embed in the Arduino environment was made to make it very easy for
you to modify the firmware to suit your application. This chapter explains how to get
started with your custom modifications.

We hope (indeed, the GPL license requires) that if you make generally useful
modifications and/or enhancements, that you will upload your enhanced source code to
the GEK wiki GCU user’s community, so that others may also benefit.

4.1 Getting started

4.1.1 Obtaining and installing the Arduino environment
Go to www.arduino.cc, and download the latest version of the Arduino development
environment. As of this writing, version 0.15 is current. Unzip the environment onto
your hard disk.

Go to the folder where you unzipped the environment, and double click Arduino.exe.
You should now have the Arduino environment up and running.

4.1.2 Obtaining and installing the source code
Go to the GEK Gasifier wiki, go to the GCU page, and find the link for the Kitchen Sink
libraries zip file, and the Basic App zip file. Download these both to your hard disk.

Unzip the libraries into <arduino-install-dir>/hardware/libraries/KS

Unzip the Basic App into <My Documents>/Arduino/KS

4.1.3 Recompiling
Now, terminate and restart the Arduino environment. This is necessary to get it to
recognize that new libraries have been installed.

In your “sketchbook”, you should find a new sketch called “KS”. Load it. You will see
the C source for the Basic App in the editor window.

Type Ctrl-R, or select SketchVerify/Compile.

If all is well, after some time, the diagnostic window will display “Binary sketch size:
<xxx> bytes (of a 126976 byte maximum)”. If this message appears, you have
successfully recompiled the Basic App.

If there are problems, scroll upward in the Arduino diagnostic window for hints as to
what may have gone wrong. If all else fails, consult the GEK wiki user’s community, or
contact Allpower Labs.

4.1.4 Uploading to the GCU
Now, plug the GCU into a USB port on your computer. If all is well, the GCU should
present itself as a serial RS-232 port. If you don’t know what port number it is, try
looking in “Control panel/System/Hardware/Device manager” (on Windows), or do
“dmesg” (on Linux).

Once you have found the correct port name or number, tell Arduino what board you’re
using and where it is:

ToolsBoardArduino Mega <<this tells Arduino what board you’re using>>
ToolsSerial Port<your port name> <<this tells Arduino what serial port it’s on>>

Now, the moment de la verité: Click the “Upload to I/O Board” button. After a few
seconds, the heartbeat LED on your GCU should go out. After a few more moments, it
should start again, the diagnostic window will display a happy message, and the Basic
App menu will again appear in the display.

If this all goes well, then congratulations – you have successfully replicated the entire
GCU firmware development environment!

Again, if all does not go well, scroll upward in the Arduino diagnostic window for hints.
If all else fails, bang your head on a wall for a few moments, then go to the GEK wiki
and start asking questions.

4.2 Modifying the firmware
Modification of the firmware is accomplished by modifying the KS GCU support
libraries, and/or the Basic App sketch. Please refer to section 5.2 below for details.

To review: The firmware is licensed to you under the GNU General Public License.
This means, in short, that if you modify the firmware you must provide the modified
source to Allpower Labs and make it available to others free of charge. This is to foster a
spirit of cooperation rather than competition, and to allow the community at large to
benefit collectively from the works of its members.

This cooperation is most easily accomplished by uploading your changes or
enhancements to the GEK Gasifier Wiki, or to the SourceForge repository.

5 Internals

5.1 ATmega1280 I/O pin assignments
The pin assignments of the MCU are listed below, by port name. The Arduino pin
assignments given are valid if you compile your Arduino sketch against the “Arduino
Mega” software core. The pins listed as “N/A” are not directly accessible via the
Arduino Mega core using the PinMode(), DigitalRead() and DigitalWrite() functions.
However, they are still accessible using your own C code. See the heartbeat LED in the
Basic App sketch for an example.

Port A: Keyscan matrix, Display. Pinned out to connector “KEYPAD”

PIN
NAME

MCU PIN
NUMBER

ARDUINO PIN
NUMBER

GCU SIGNAL
NAME

USE

PA0 78 22 SCAN0 Keyscan matrix
/ Display

PA1 77 23 SCAN1 Keyscan matrix
/ Display

PA2 76 24 SCAN2 Keyscan matrix
/ Display

PA3 75 25 SCAN3 Keyscan matrix
/ Display

PA4 74 26 KEY0 Keyscan matrix
PA5 73 27 KEY1 Keyscan matrix
PA6 72 28 KEY2 Keyscan matrix
PA7 71 29 KEY3 Keyscan matrix

Port B: Used for R/C servo outputs, AVR ISP, and expansion

PIN
NAME

MCU PIN
NUMBER

ARDUINO PIN
NUMBER

GCU SIGNAL
NAME

USE

PB0 19 53 TP19 Expansion
PB1 20 52 SPI_SCK AVR ISP
PB2 21 51 SPI_MOSI AVR ISP
PB3 22 50 SPI_MISO AVR ISP
PB4 23 10 TP18 Expansion
PB5 24 11 SERVO0 SRV0 pwm

output
PB6 25 12 SERVO1 SRV1 pwm

output
PB7 26 13 SERVO2 SRV2 pwm

output

Port C: User expansion area. Pinned out to testpads.

PIN
NAME

MCU PIN
NUMBER

ARDUINO PIN
NUMBER

GCU SIGNAL
NAME

USE

PC0 53 37 TP27 Expansion
PC1 54 36 TP26 Expansion
PC2 55 35 TP25 Expansion
PC3 56 34 TP24 Expansion
PC4 57 33 TP23 Expansion
PC5 58 32 TP22 Expansion
PC6 59 31 TP21 Expansion
PC7 60 30 TP20 Expansion

Port D: I2C, Serial, User expansion, Frequency counter input

PIN
NAME

MCU PIN
NUMBER

ARDUINO PIN
NUMBER

GCU SIGNAL
NAME

USE

PD0 43 21 SCL I2C Expansion,
TP29

PD1 44 20 SDA I2C Expansion,
TP28

PD2 45 19 TP30 Expansion
PD3 46 18 TP31 Expansion
PD4 47 N/A TP15 Expansion
PD5 48 N/A TP16 Expansion
PD6 49 N/A TP17 Expansion
PD7 50 38 TIMER0 Frequency

counter input

Port E: User expansion, FET PWM

PIN
NAME

MCU PIN
NUMBER

ARDUINO PIN
NUMBER

GCU SIGNAL
NAME

USE

PE0 2 0 HOST_RXD,
TP11

Host USB
interface

PE1 3 1 HOST_TXD,
TP12

Host USB
interface

PE2 4 TP13 Expansion
PE3 5 5 FET0 FET PWM

output
PE4 6 2 FET1 FET PWM

output
PE5 7 3 FET2 FET PWM

output
PE6 8 N/A TP14 Expansion
PE7 9 N/A SYSCLK System clock

output

Port F: Auxiliary analog inputs, JTAG interface

PIN
NAME

MCU PIN
NUMBER

ARDUINO PIN
NUMBER

GCU SIGNAL
NAME

USE

PF0 97 54 ANA0 Aux analog
input

PF1 96 55 ANA1 Aux analog
input

PF2 95 56 ANA2 Aux analog
input

PF3 94 57 ANA3 Aux analog
input

PF4 93 58 JTAG_TCK JTAG
PF5 92 59 JTAG_TMS JTAG
PF6 91 60 JTAG_TDO JTAG
PF7 90 61 JTAG_TDI JTAG

Port G: Display control, frequency counter, user expansion

PIN
NAME

MCU PIN
NUMBER

ARDUINO PIN
NUMBER

GCU SIGNAL
NAME

USE

PG0 51 41 DISPSTB Display
PG1 52 40 DISPRW Display
PG2 70 39 DISPRS Display
PG3 28 N/A TP9 Expansion
PG4 29 N/A TIMER0 Frequency

counter input
PG5 1 4 TP10 Expansion

Port H: Aux RS232, CANbus, FET outputs, user expansion

PIN
NAME

MCU PIN
NUMBER

ARDUINO PIN
NUMBER

GCU SIGNAL
NAME

USE

PH0 12 17 SER_RXD Aux RS232
PH1 13 16 SER_TXD Aux RS232
PH2 14 CAN_CS CANbus
PH3 15 6 FET3 FET PWM

output
PH4 16 7 FET4 FET PWM

output
PH5 17 8 FET5 FET PWM

output
PH6 18 9 TP8 Expansion
PH7 27 N/A TP7 Expansion

Port J: SD, CANbus, Aux RS232, LED

PIN
NAME

MCU PIN
NUMBER

ARDUINO PIN
NUMBER

GCU SIGNAL
NAME

USE

PJ0 63 15 SD_CAN_MISO SD/CANbus
PJ1 64 14 SD_CAN_MOSI SD/CANbus
PJ2 65 N/A SD_CAN_SCK SD/CANbus
PJ3 66 N/A SD_NSS SD
PJ4 67 N/A SER_CTS Aux RS232
PJ5 68 N/A SER_RTS Aux RS232
PJ6 69 N/A CAN_INT CANbus
PJ7 79 N/A LED LED output

Port K: Temperature, Pressure, Aux analog

PIN
NAME

MCU PIN
NUMBER

ARDUINO PIN
NUMBER

GCU SIGNAL
NAME

USE

PK0 89 62 AT0 Temperature
PK1 88 63 AT1 Temperature
PK2 87 64 AT2 Temperature
PK3 86 65 AT3 Temperature
PK4 85 66 AP0 Pressure
PK5 84 67 AP1 Pressure
PK6 83 68 TP5 Analog

expansion
PK7 82 69 TP4 Analog

expansion

Port L: FET output, Dallas 1wire, Temperature, Pressure, User expansion

PIN
NAME

MCU PIN
NUMBER

ARDUINO PIN
NUMBER

GCU SIGNAL
NAME

USE

PL0 35 49 TP3 Expansion
PL1 36 48 TP2 Expansion
PL2 37 47 TP1 Expansion
PL3 38 46 FET6 FET PWM

output
PL4 39 45 FET7 FET PWM

output
PL5 40 44 DQ Dallas 1wire

interface
PL6 41 43 MUXA Temperature /

Pressure
PL7 42 42 MUXB Temperature /

Pressure

5.2 Firmware internals

5.2.1 Boot loader
The KS GCU is supplied with the “Arduino Mega” bootloader pre-loaded into flash
memory. The Arduino bootloader is protected by the AVR’s flash-protection fuse
pattern, so the bootloader doesn’t erase itself when you upload new code to the board.

If you somehow accidentally zorch the bootloader, you must upload a new one using an
AVR-ISP programming dongle. Consult the Arduino documentation on how to do this.

5.2.2 Arduino core
As of this writing, the Basic App is compiled against the “Arduino Mega” core files.
These are located in <<Arduino-install-dir>>/hardware/cores/arduino.

One drawback to this is that not all the ATMega’s I/O pins are mapped into Arduino’s
“Digital I/O” pin space (see the pin assignments below for details, or consult the core file
“pins-arduino.c”). Allpower Labs will eventually write a set of core files for the KS
GCU, or you may do so yourself. If you do, please post them to the GCU Wiki page, or
upload them to SourceForge.net/kitchensink.

If you wish to simply work around this problem, you can use the native AVR-style port
macros to read and write pins that are not mapped into the Arduino’s “Digital I/O” pin
space. These macros are defined in <avr/io.h>, found at

<<Arduino-install-dir>>/hardware/tools/avr/avr/include/avr/io.h

See the Basic App source code for an example.

5.2.3 Libraries
The KS GCU Basic App uses a set of support libraries to allow I/O access to all the
GCU’s hardware functions. The Basic App was developed directly in C before it was
ported to the Arduino environment; hence, these support libraries do not make use of the
Arduino core files.

It is Allpower Labs intention to eventually modify the KS GCU libraries to make use of
the Arduino core files, and of other Arduino libraries which others have already written
(for instance, the LiquidCrystal.cpp display library, and the Servo PWM library).

Until this time, please feel encouraged to port portions of the Basic App and the
supporting libraries to the Arduino core. As usual, if you do so, please upload your
source code to the GCU Wiki page, or to SourceForge.net/kitchensink, so that others may
benefit from your efforts.

The KS GCU support libraries are as follows. They are located where you installed
them, i.e. in <<Arduino-install-dir>>/hardware/libraries/KS.

• Adc.c: functions to set the on-board four-to-one analog multiplexers, and to read

the on-chip A/D converter
• Display.c: functions to drive the LCD display (Hitachi HD44780 compatible)
• Fet.c: functions to turn the FETs on and off (eventually, to do PWM control)
• Keypad.c: supports synchronous or asynchronous scanning of the keypad
• Pressure.c: supports the on-board pressure sensors
• Temp.c: supports the on-board temperature sensors
• Servo.c: not written yet. A stub for PWM servo control
• Timer.c: not written yet. A stub for the timer/counter RPM input routines
• Ui.c: a set of menu screens which support the menus found in the Basic App. In

theory, these should be eventually moved out into the sketch directory, rather than
being treated as a library. I simply have not figured out how to compile a sketch
from multiple source files yet. If you figure it out, please let the GCU community
know.

5.2.4 Basic App Arduino sketch

After all that, the Basic App is really quite simple. It is written using the Arduino core
idiom, of a setup() function and a loop() function.

The setup() function should be self-explanatory.

The loop() function has basically five parts:

• Read all the various on-board sensors (and stash their values into statically
allocated arrays defined by the various I/O modules)

• Display a User Interface screen on the built-in LCD display (menu state is stored
statically internal to the ui.c module)

• Scan the keypad for a key, and handle the key if necessary (key handler is at the
moment internal to the ui.c module – it manipulates the static UI menu state)

• Write all the various on-board actuators (using values from statically allocated
arrays defined by the various I/O modules)

• Log data to the USB serial port (once per second)

This dispatch loop is executed as fast as possible, but with a 100 ms delay. Note the
dispatch loop also toggles the state of the heartbeat LED each time it executes. This
gives direct visual indication of computational progress.

The main loop() calls the data logging routine, not on every loop execution, but once per
second. It does this by checking the return value from the Arduino real-time counter
millis(), and calling the logging routine only if it’s time to log another data point.

Modification style is basically up to you. Two simple and useful ideas are:

SD Data Logging: Modify the logging routine to write the on-board I/O data into a file
on the on-board SD card.

Automated Measurement and Control: Write a control function to effect control based
on measurements. Examples might be a thermostat, an automated fuel feed, an RPM
governor, etc.

Insert your control function into the main dispatch loop(), after reading inputs, but before
writing outputs. It can get the values of all the on-board inputs by referring to the input
value arrays (i.e. Temp_Data[], Press_Data[], etc.), and it can arrange for outputs to be
effected by writing the output value arrays (i.e. Servo_Data[], Fet_Data[], etc.).

If you’re going to keep the existing on-board menu system, be sure to think carefully
about how your automated outputs will interact with it. You may wish to disable certain
control items in the menu system, or establish some means of manual override, or you
might choose to not worry about it at the software level.

Good luck, and Happy Hacking!

6 Appendices

6.1 Warranty
XXX TBD

6.2 Resources on the web

6.2.1 Allpower Labs
http://www.allpowerlabs.org

6.2.2 GEK
http://gekgasifier.pbworks.com

6.2.3 Kitchen Sink on Sourceforge
http://sourceforge.net/projects/kitchensink/

6.2.4 Arduino
http://www.arduino.cc

6.2.5 Atmel
http://www.atmel.com

6.2.6 GCC homepage
http://gcc.gnu.org

6.2.7 WinAVR homepage
http://winavr.sourceforge.net/

6.2.8 IAR systems
http://www.iar.com

6.2.9 Omega
http://www.omega.com

6.2.10 Freescale Semiconductor
http://www.freescale.com

6.2.11 FTDI
http://www.ftdichip.com

6.3 I/O connector pinouts
PWR
PIN IDENTIFIER PIN NAME DESCRIPTION
Center +V_in Positive voltage supply, 7 to

30VDC
Outside GND Ground

T0 through T15
PIN IDENTIFIER PIN NAME DESCRIPTION
Long slot K Thermocouple -
Short slot A Thermocouple +

PS0 through PS3
FITTING IDENTIFIER FITTING NAME DESCRIPTION
Bottom tube (nearest PC
board)

“Vacuum” (P2) side Positive pressure here
relative to P1, gives a
negative reading

Top tube (away from PC
board)

“Pressure” (P1) side Positive pressure here
relative to P2, gives a
positive reading

FET0-3
PIN NUMBER PIN NAME DESCRIPTION
1 (indicated by white stripe) GND FET0 – FET3 ground return
2 FET0 FET0 sink-to-ground output
3 FET1 FET1 sink-to-ground output
4 FET2 FET2 sink-to-ground output
5 FET3 FET3 sink-to-ground output
6 FET0-3_FLYBACK Positive flyback reference

voltage for FET0 – FET3.
If JP501 is installed, this is
taken from the onboard
power jack. If JP501 is
absent, this pin must be
externally connected to the
positive supply for the
devices being switched by
the FET0 – FET3 outputs.

FET4-7
PIN NUMBER PIN NAME DESCRIPTION
1 (indicated by white stripe) GND FET4 – FET7 ground return
2 FET4 FET4 sink-to-ground output
3 FET5 FET5 sink-to-ground output
4 FET6 FET6 sink-to-ground output
5 FET7 FET7 sink-to-ground output
6 FET4-7_FLYBACK Positive flyback reference

voltage for FET4 – FET7.
If JP502 is installed, this is
taken from the onboard
power jack. If JP502 is
absent, this pin must be
externally connected to the
positive supply for the
devices being switched by
the FET4 – FET7 outputs.

USB
PIN NUMBER PIN NAME DESCRIPTION
1 V_BUS USB bus power
2 D- USB inverted data
3 D+ USB positive sense data
4 GND Signal ground

SRV0 through SRV2
PIN NUMBER PIN NAME DESCRIPTION
1 (indicated by white stripe) GND Servo ground return (black

wire on hobby servoes)
2 +V Servo power (+5VDC, up to

2A) (red wire on hobby
servos)

3 PWM Servo PWM data (0.5 to 1.5
ms pulse width) (white wire
on hobby servos)

TIMER
PIN NUMBER PIN NAME DESCRIPTION
1 (indicated by white stripe) GND Ground
2 TIMER_IN Timer input signal (input to

user-programmable resistor
divider network R601,
R602)

3 GND Ground

CAN
PIN NUMBER PIN NAME DESCRIPTION
1 (indicated by white stripe) CAN_L CAN inverted-sense data
2 GND Ground
3 CAN_H CAN positive-sense data

ANA
PIN NUMBER PIN NAME DESCRIPTION
1 (indicated by white stripe) AGND Analog ground reference
2 ANA0 Auxiliary analog input 0

(input to user-
programmable resistor
divider network R603,
R604)

3 ANA1 Auxiliary analog input 1
(input to user-
programmable resistor
divider network R605,
R607)

4 ANA2 Auxiliary analog input 2
(input to user-
programmable resistor
divider network R608,
R609)

5 ANA3 Auxiliary analog input 3
(input to user-
programmable resistor
divider network R610,
R611)

6 +5V +5VDC utility output

ISP1
PIN NUMBER PIN NAME DESCRIPTION
1 (indicated by white dot) MOSI Master out, slave in
2 VTG
3 GND Ground
4 GND Ground
5 RST Processor reset
6 GND Ground
7 SCK SPI Serial clock
8 GND Ground
9 MISO Master in, slave out
10 GND Ground

ISP2
PIN NUMBER PIN NAME DESCRIPTION
1 (indicated by white dot) MISO Master in, slave out
2 VTG
3 SCK SPI Serial clock
4 MOSI Master out, slave in
5 RST Processor reset
6 GND Ground

JTAG
PIN NUMBER PIN NAME DESCRIPTION
1 (indicated by white dot) TCK
2 GND
3 TDO
4 VREF
5 TMS
6 SRST
7 VCC
8 TRST
9 TDI
10 GND

KEYPAD
PIN NUMBER PIN NAME DESCRIPTION
1 (indicated by white dot) KEY0 Keyscan matrix, column 0

(left)
2 KEY1 Keyscan matrix, column 1
3 KEY2 Keyscan matrix, column 2
4 KEY3 Keyscan matrix, column 3

(right)
5 SCAN0 Keyscan matrix, row 0

(onboard)
6 SCAN1 Keyscan matrix, row 1
7 SCAN2 Keyscan matrix, row 2
8 SCAN3 Keyscan matrix, row 3

RS232
PIN NUMBER PIN NAME DIRECTION DESCRIPTION
1 N/C
2 RXD Input Received data
3 TXD Output Transmitted data
4 N/C
5 GND Signal ground
6 N/C
7 RTS Output Request to send
8 CTS Input Clear to send
9 N/C

6.4 Firmware repository
The firmware source code repository will be located at sourceforge.net, under the project
name “kitchensink”.

