THERMODYNAMIC DRIVING FORCES FOR POST-GASIFICATION CARBON DEPOSITION

Philip A. Marrone, Christopher J. Pope, Bryan V. Yeh

Science Applications International Corporation (SAIC) - FOCIS Division, Newton, MA 02459

2009 International Conference on Thermochemical Biomass Conversion Science 16-17 September 2009 Poster #19

Introduction / Problem Statement

Typical Biomass Gasification Process

Fuel production process shown

- Product stream from gasifier
 - T = 900-1100°C (1700-2000°F)
 - Need to cool for gas cleanup prior to downstream processing
 - May be able to recover heat as it cools
 - Stream is hot enough to react further
 - Possible solid formation and deposition as T drops
 - Tars: begin to condense at T < 400°C (750°F)
 - Solid carbon (soot)
 - Solid deposition can foul surfaces of downstream equipment

Economic viability of heat recovery depends on what T solid carbon formation and deposition occurs during cooldown for given system.

Reactions

Gas Phase Reactions Pertinent to Gasification Systems

Reaction	Name	∆H° (kJ/mol)*	∆G° (kJ/mol)*
C + CO ₂ = 2 CO	Boudouard	172	120
$C + H_2O = CO + H_2$	Water Gas	131	91
C + 2 H ₂ = CH ₄	Methanation	- 75	- 51
$CO + H_2O = CO_2 + H_2$	Water Gas Shift	- 41	- 29
$CH_4 + H_2O = CO + 3 H_2$	Steam Reforming	206	142
CH ₄ + CO ₂ = 2 CO + 2 H ₂	Dry Reforming	247	171

^{*} Standard values at 298 K

Objectives and Approach

Objective:

Find operating conditions at which solid carbon formation is thermodynamically disfavored during cooldown (post-gasifier, after char removal) ———— temperature window where carbon formation is avoided.

Approach:

Use global equilibrium calculations for predicting:

- Temperature at which solid carbon first appears during cooldown (= T_{dep})
- Composition of product stream for given conditions

Kinetics need not be considered where solid carbon formation is not favored thermodynamically.

Approach

Global Equilibrium Calculations

- STANJAN solver used
- Approach minimizes Gibbs Free Energy of entire mixture (Method of Lagrange Multipliers)

Inputs:

- Temperature
- Pressure
- Atom fractions of C, H, O
- List of chemical species
 - •Gas-phase {CH₄, CO, CO₂, H₂, H₂O}
 - •C(S) [solid carbon graphite]
- Thermodynamic properties of species in JANAF format

Outputs:

- Mole fractions of individual species
- Thermodynamic properties of mixture (ΔU, ΔH, ΔS)

- Also useful for predicting optimal gas-phase concentrations
 - CO, H₂ desired products; CH₄, CO₂ not desired

Approach

Operating Variables Explored:

- Pressure
- Steam/carbon (H₂O/C) mass ratio
 - Includes moisture in wood
- Amount of char formed in gasifier and removed prior to cool down (% char)

Base case conditions:

- Typical gasifier operating conditions
 - Pressure = 4 atm
 - H₂O/C mass ratio = 1.0
 - Char formed and removed (% char) = 5% of wood C
- Wood properties
 - Dry wood: 52% C, 6% H, 41% O by mass
 - Wood moisture = 25% by mass

Mole fractions (for entire mixture)

 $H_2O/C = 1.0, 5\%$ char, 4 atm

8

Gas-phase mole fractions

 $H_2O/C = 1.0, 5\%$ char, 4 atm

Fraction of C as CH₄, CO, CO₂, and C(S)

 $H_2O/C = 1.0, 5\%$ char, 4 atm

10

Carbon Deposition Temperature Values

Variation in T_{dep} (and atomic C/O ratio) with H_2O/C and % char [P = 4 atm]

T _{dep} (K) C/O ratio	$H_2O/C = 0.5$	H ₂ O/C = 1.0	H ₂ O/C = 1.5	H ₂ O/C = 2.0	H ₂ O/C = 2.5
1% char	*	1066	975	875	618
	1.071	0.787	0.622	0.514	0.438
5% char	*	1049	958	830	578
	1.028	0.755	0.597	0.494	0.421
10% char	1239	1028	934	711	539
	0.973	0.716	0.566	0.468	0.399
15% char	1156	1006	901	621	505
	0.919	0.675	0.534	0.442	0.376
20% char	1112	983	841	565	476
	0.865	0.636	0.500	0.416	0.354
25% char	1078	956	705	522	455
	0.811	0.596	0.468	0.390	0.332
30% char	1049	923	605	486	426
	0.757	0.557	0.437	0.364	0.310

Increasing heat recovery potential

Increasing heat recovery potential

^{* =} solid carbon is predicted to form at all temperatures

^{□ =} base case for this study

Carbon Deposition Temperature Values

Correlation between T_{dep} and atomic C/O ratio

Pressure variation results

- Higher pressure adversely affects C(S), gas-phase species:
 - T_{dep} increases
 - C(S) increases (at higher temperatures)
 - CO, H₂ decrease
 - CH₄, CO₂, H₂O increase
- However, reactor size decreases with increasing pressure, so there is a trade-off

Solid carbon formation

 $H_2O/C = 1.0, 5\%$ char

Gas-phase mole fractions

 $H_2O/C = 1.0, 5\%$ char

Fraction of C atoms as CH₄, CO, CO₂, C(S)

16

 $H_2O/C = 1.0, 5\%$ char

Varying H₂O/C ratio

H₂O/C ratio variation results

- Higher H₂O/C ratio (i.e., increasing steam) reduces carbon formation potential:
 - T_{dep} decreases
 - C(S) decreases
 - CO, CH₄, H₂ generally decrease
 - H₂O, CO₂ increase
- Examining fraction of C atoms distribution (instead of mole fraction) removes effects of dilution by steam
- Increased CO₂ quantities from Water Gas Shift reaction

Varying H₂O/C ratio

Solid carbon formation

Solid carbon formation and T_{dep} drop significantly with increasing steam

Varying H₂O/C ratio

Gas-phase mole fractions

Varying H₂O/C ratio

Fraction of C atoms as CH₄, CO, CO₂, C(S)

% Char variation results

- Increasing amount of char formed and removed prior to cooldown decreases carbon in system:
 - T_{dep} decreases
 - C(S) decreases
 - CO, CH₄, H₂ decrease
 - CO₂, H₂O increase
- Difficult to manipulate % char directly
- As more char is formed and removed:
 - Less carbon enters post-gasifier cooldown
 - Comparing fraction of C distribution can be misleading since only post-char removal carbon quantity varies

Solid carbon formation

More char removed = less carbon in system = lower T_{dep}

Gas-phase mole fractions

 $H_2O/C = 1.0, 4 atm$

Fraction of C atoms as CH₄, CO, CO₂, C(S)

 $H_2O/C = 1.0, 4 atm$

% Char variation results (continued)

- Char formation itself is under kinetic control
 - Can be varied by changing gasifier conditions
- Total wood carbon lost as char plus (post-gasifier) solid carbon formation
 - Increases with increasing % char above T_{dep}
 - Trend in total wood C lost provides further evidence that char formation is under kinetic control
- Considering post-gasifier carbon-containing species as fraction of total wood carbon
 - Profiles of CH₄, CO, CO₂ similar to mole fraction profiles

Char + C(S) trends

 $H_2O/C = 1.0, 4 atm$

Fraction of total wood C atoms (yield) as CH₄, CO, CO₂, C(S)

 $H_2O/C = 1.0, 4 atm$

Summary / Conclusions

Summary

- T_{dep} lowered by
 - Lowering pressure
 - Increasing H₂O/C ratio
 - Increasing % char formed and removed
- Low T_{dep} desired to increase temperature window for heat recovery
- Conditions which lower T_{dep} also lower C(S)
- However, these conditions also affect gas-phase concentrations....

Summary / Conclusions

Summary (continued)

- Desired products (CO, H₂) changed by conditions lowering T_{dep}:
 - Lower pressure increases CO, H₂
 - Increased H₂O/C decreases CO, H₂
 - Increasing % char also decreases CO, H₂
 - Effect on CO₂, H₂O opposite to that of CO, H₂
- CH₄ (not desired) also affected by conditions lowering T_{dep}:
 - Lower pressure decreases CH₄
 - Increased H₂O/C decreases CH₄ (at higher values of T)
 - Increasing % char also decreases CH₄

Summary / Conclusions

Conclusions

- Conditions found which optimize heat recovery without solid carbon formation during cooldown of post-gasifier stream
- Trade-offs exist between lowering T_{dep} and
 - Equilibrium gas-phase species distribution
 - Reactor size (= capital costs)
- Equilibrium calculations most valid at high T, long residence times
- Char formation in gasifier under kinetic control
 - Kinetics of post-gasifier solid carbon formation needed for further validation of approach